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Abstract 

We construct generators of the principle Heisenberg subalgebra in the 

quantized universal enveloping algebra (m )2 .U sl  Applications for exactly 

solvable models are proposed. 

1. Introduction 

Quantum groups [1] are among central objects of interest both in 
pure mathematics and mathematical physics. Numerous applications of 
quantum group structure are known to have indispensable success in 
disclosure of underlying mathematical structures in problems of real-life 
physics and abstract models. Heisenberg subalgebras inside Kac-Moody 
Lie algebras [6] play a fundamental role in separating Heisenberg-type 
algebraic structures among huge sets of basises admitted for descriptions 
of physical models. Their importance for integrable models can be 
compared to the importance of appropriate choice of coordinates in 
mechanics. Quantum group Heisenberg subalgebra are well-known and 
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used in the case of the homogeneous grading [3, 5, 12]. In this note, we 
propose a version of the Heisenberg subalgebra inside a quantum 
universal enveloping algebra in the principle [8, 5, 3, 12] grading case. 

2. Principle Heisenberg Subalgebra in Quantum Group 

Consider the Lie algebra 2sl  generated by the elements { }±xh,  with 

standard relations [6] 

[ ] ,2, ±± ±= xxh  

[ ] ., hxx =−+  

Following related ideas of [2], let us define the elements 

l ( ) ,x h x++ ≡ Φ  (1) 

l ( ) ,x x h−− ≡ Φ   (2) 

l ,h h≡  

where ( )hΦ  is an invertible function of h. Then, we substitute (1)-(2) to 

the commutation relations of the quantum group [1] ( )2slUq  in the 

Drinfeld-Jimbo form [3, 5] to obtain 

[ l l ] l, 2 ,h x x± ±= ±  

[ l l ] [ l ]
l l

1, .
h h

q
q qx x h
q q

−

+ − −
−

= ≡
−

 

Then, assuming the formulas 

( ) ( ),2+Φ=Φ ++ hxxh  

( ) ( ) ,2 −− +Φ=Φ xhhx  
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and the form of the Casimir operator [1] 

,2
12 2 hhxxC −+= −+  

to express −+xx  and +−xx  via C and h. One can solve the equation 

( ) ( ) ( ) [ l ]2 ,qh x x h x h x h+ − − +Φ Φ − Φ =  

to obtain ( )hΦ  from 

( ) ( ) ( ) ( ) ,22
222

2
1

22
−

−

−

−=



 +

−+Φ−



 −

−Φ
qq
qqhhChhhCh

hh
 

in terms of C and h. 

Introducing the affinization of the Lie algebra 2sl  with C∈λ  as in [6], 

we have for the generators of the zero-level Heisenberg subalgebra in the 

affine m2sl  

( ) ,−++ λ+≡λ xxE   (3) 

( ) ( ).11 λλ=λ+≡λ +
−

+
−

−− ExxE   (4) 

Then the operator 

( ) ( ) ( ) ( ),,,, −+ λ−ζλ+ζλ≡ζλ xxBhAF  

with 

( ) ,, 2 jj

j
A λζ−≡ζλ −

∈
∑
Z

 

( ) ,, 12 jj

j
B λζ≡ζλ −−

∈
∑
Z

 

is an eigenoperator with respect to (3)-(4) for C∈ζ  [6]. 
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Now, let us define for the quantum Heisenberg subalgebra ( m )2q slH  

generated by the elements l l{ }, ,E E+ −  

l ( ) ( ) ( ) ( )1, ,E h h E h−
± ±λ = Φ λ Φ   (5) 

so that 

l ( ) l ( ), , , 0,E h E h+ − λ λ =   

and put 

l ( ) ( ) ( ) ( )1, , , ,F h h F h−λ ζ = Φ λ ζ Φ  

thereof l ( ),F λ ζ  are eigenoperators for l , .E± ζ ∈C  In terminology of 

ordinary Lie algebras, constructed elements l l{ },E E+ −  constitute the 

principle Heisenberg subalgebra inside the quantized universal 

enveloping algebra ( m )2 .qU sl  Similar considerations are possible for the 

case of homogeneous [6, 12] grading of ( m )2 .qU sl  

3. Applications 

Using the construction of previous section, we can define vertex 
operators [6, 7, 5] 

( ) l l
0 0

exp exp ,n n n
n n z

n n
V z E z E z z

∞ ∞
− α

+
= =

   
   ≡ ∂
   
   
∑ ∑   (6) 

for z,C∈α  being formal parameters. Suitable for the construction of a 
vertex operator representations [5] for corresponding quantum group. 
One could also relate this construction to quantum vertex algebras [9]. 

In [11], a group-theoretical [8] way to construct solutions to the affine 
Toda models was found. In particular, an algebraic origin of classical 
solitonic solutions was proposed. It is based on the existence of a 
Heisenberg subalgebra inside an affine Lie algebra underlying 
corresponding affine Toda model, and soliton vertex operators. In [12], we 



PRINCIPLE HEISENBERG SUBALGEBRA IN A … 43

have studied the quantum group structure of the quantum soliton vertex 
operators for the sine-Gordon model. Those vertex operators 

corresponded to the homogeneous grading of l 2.sl  

A general way to obtain the principle Heisenberg subalgebra 
proposed in these notes opens a way to study quantum vertex operators 

for the sine-Gordon model associated to the principle grading of l 2.sl  

Using the form of the quantum principle Heisenberg subalgebra, we can 
define vertex operators as in (6) and prove that they exhibit other 
properties of quantum vertex operators [12]. One can also generate 
solitonic specializations to the quantum Heisenberg operator solutions to 
the affine Toda models [10]. The group element [11] in the formal general 
solution in the solitonic specialization can be chosen in the from 

( ) ( ),expexp 0 −
−

+
+= EzgEzg   (7) 

where ±z  are light-cone coordinates on the plane, and 0g  does not 

depend on .±z  In quantum case, we replace the generators ±E  (3)-(4) 

with the generators lE +  (5). The group element (similar to the classical 

one in [11]) is then given by 

l ( )( )0
1

exp , , ,
N

m m
m

g Q F h
=

= λ ζ∏   (8) 

where NmQm ,,1, …=∈ R  are some real constants, and C∈ζm  play 

a role of soliton rapidities. Due to the properties of the quantum principle 
Heisenberg subalgebra discussed in Section 2, it is easy to commute 

exponentials of the generators lE +  with the group element (8). Then the 

generators lE +  act on corresponding highest/lowers quantum group 

representation space vectors, and we obtain the quantum soliton-

generating operators l ( ), , ,m mF hω λ ζ  where C∈ωm  are their 

eigenvalues with respect to l .E +  
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In [4], the higher grading generalizations for the conformal affine 
Toda models were considered. Both in principle and homogeneous 
grading of an underlying affine Lie algebra interesting models were 
obtained and solved reflecting in particular physical interactions between 
Toda and matter fields (associated to higher grading generators). The 
construction given here will allow to construct quantum versions to the 
solutions of the mentioned higher grading Toda systems. 

In a forthcoming paper, we will extend the construction given in this 
notes to the cases of general Kac-Moody algebras. 
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